JRC Dataset

Small punch creep test data for 2.25 Cr 1Mo V mod material at 600 °C and a load of 210 N

Description:
Data collection created in the scope of a programme designed to evaluate the reliability of the Small Punch (SP) testing method as an alternative mechanical test technique for evaluation of the residual life and integrity assessment of components in ageing plants. Tests were performed on the low alloy - 2¼Cr 1Mo V modified ferritic steel, widely selected for construction of high temperature components in petrochemical plants. The technique was shown to facilitate determination of both creep and tensile properties of materials. However, special attention was directed to the potential of the SP creep testing technique for assessing the deterioration of material due to hydrogen attack and thermal ageing, in comparison with conventional uniaxial creep methods.

Contributors:
- Hurst, Roger Christopher None
- Castello, Paolo paolo.castello@ec.europa.eu
- Harskamp, Frederik frederik.harskamp@ec.europa.eu
- Di Persio, Franco franco.di-persio@ec.europa.eu

How to cite:
Hurst, Roger Christopher; Castello, Paolo; Harskamp, Frederik; Di Persio, Franco(2016): Small punch creep test data for 2.25 Cr 1Mo V mod material at 600 °C and a load of 210 N. European Commission, Joint Research Centre (JRC) [Dataset] doi:10.5290/1000000110012 PID: http://data.europa.eu/89h/jrc-odin-1000000110012

Keywords:
Elevated temperature material properties

Related resources:
Data access
MatDB XML distribution
MatDB XML distribution
https://odin.jrc.ec.europa.eu/alcor/Flex?entity=DOI&p;_version=null&action;=displayXML&p;_xmlType=data&p;_RN5=10 00000110012

Additional information:
Last Modified: 2016-02-26
Issue date: 2016
Landing page: https://doi.org/10.5290/1000000110012
Geographic area: European Union
Language: English
Data theme(s): Energy; Science and technology
EuroVoc domain(s): 36 SCIENCE; 64 PRODUCTION, TECHNOLOGY AND RESEARCH; 66 ENERGY
Identifier: http://data.europa.eu/89h/jrc-odin-1000000110012
Digital Object Identifier: 10.5290/1000000110012